

PRIMER ENCUENTRO TÉCNICO SOBRE LA ESTRUCTURACIÓN DE PROYECTOS DE ASOCIACIÓN PÚBLICO-PRIVADA

Introducción a la modelación financiera en esquemas de APPs

Simulación de deuda de pagos diferidos

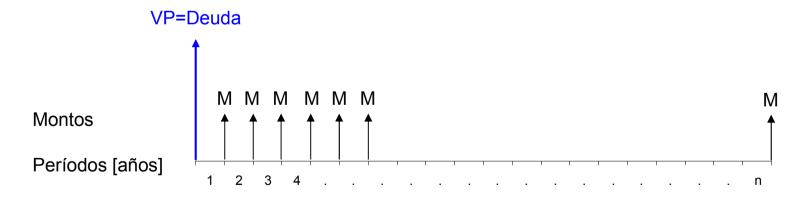
ENRIQUE MORAGA BERARDI

Consultor Privado

enrique.moraga.b@gmail.com

19 y 20 de febrero de 2009 México, Distrito Federal.

- Cupones constantes
- Amortizaciones constantes
- Cupones crecientes
- Bullet
- Cero cupón
- El mundo real



Cupones constantes

- Anualidad Equivalente
 - Corresponde al monto que se debe pagar en todos los períodos, con el propósito de obtener un valor presente o valor futuro determinado.

Cupones constantes

 Ahora el valor presente es la deuda contraida y el monto M es el cupón que permite repagarla.

Deuda =
$$\frac{C}{1+r} + \frac{C}{(1+r)^2} + \frac{C}{(1+r)^3} + \dots + \frac{C}{(1+r)^n}$$

$$Deuda = C \times \sum_{i=1}^{n} \frac{1}{(1+r)^{i}} \longrightarrow C = \frac{Deuda}{\frac{1}{r} - \frac{1}{r(1+r)^{n}}}$$

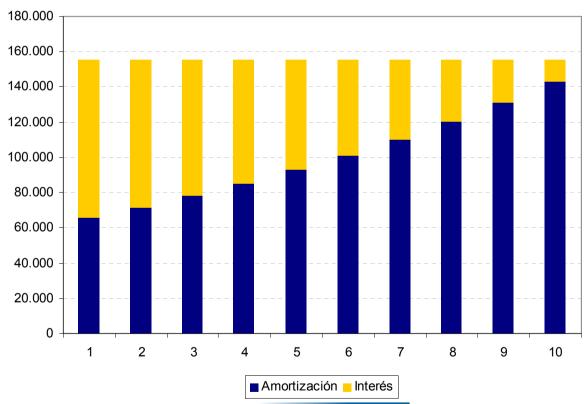
Fórmula Excel: Pago(r;n;Deuda)

Slide 4

EMB18

Lo de las fórmulas es sólo para justificar el título del capítulo.

Noten que si n es muy grande (infinito), el segundo término se hace cero y la anualidad equivalente es igual a VP*r. Esto se verá más adelante en el capítulo de perpetuidad, pero ya tienen la intuición


enrique.moraga, 2/5/2009

Cupones constantes

Ejemplo: D=1.000.000, N=10, r=9%

- Cupones constantes
- Amortizaciones constantes
- Cupones crecientes
- Bullet
- Cero cupón
- El mundo real

Amortizaciones Constantes

Desarrollo de la deuda
$$D - \sum_{i=1}^{n} A = 0 \longrightarrow A = \frac{D}{n}$$

Período	Deuda	Interés	Amortización
0 (inicio)	D		
1	D-A	D*r	Α
2	D-A-A	(D-A)*r	Α
	-	-	
	•	•	•
-	•	•	
	-	-	-
	•	•	
n	$D - \sum_{i=1}^{n} A = 0$	$\left(D - \sum_{i=1}^{n-1} A\right) \times r$	А

Amortizaciones Constantes

$$Cup\acute{o}n_1 = A + D \times r = D \times \left(r + \frac{1}{n}\right)$$

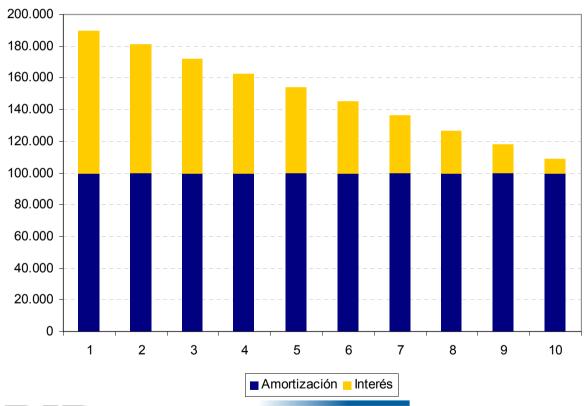
$$Cup\acute{o}n_2 = A + (D - A) \times r = Cup\acute{o}n_1 - A \times r = D \times \left(r + \frac{1}{n}\right) - \frac{D}{n} \times r$$

$$Cup\acute{o}n_3 = A + (D - 2A) \times r = Cup\acute{o}n_2 - A \times r = D \times \left(r + \frac{1}{n}\right) - \frac{D}{n} \times 2$$

•

.

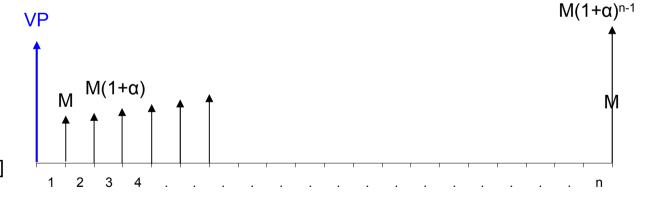
$$Cup\acute{o}n_{n} = A + \left(D - \left[n - 1\right]A\right) \times r = Cup\acute{o}n_{n-1} - A \times r = D \times \left(r + \frac{1}{n}\right) - \frac{D}{n} \times \left(n - 1\right)$$



Amortizaciones Constantes

Ejemplo: D=1.000.000, N=10, r=9%

- Cupones constantes
- Amortizaciones constantes
- Cupones crecientes
- Bullet
- Cero cupón
- El mundo real

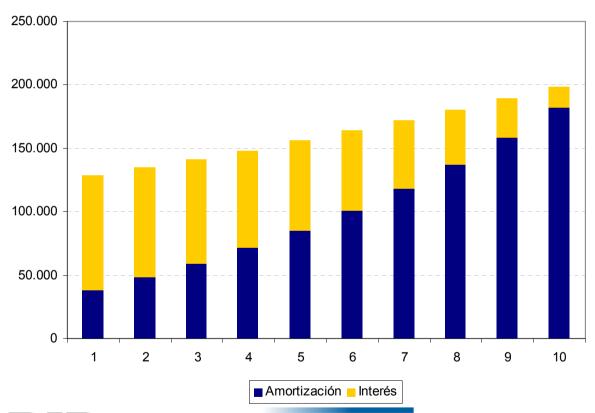

Cupones crecientes

Anualidad Equivalente con crecimiento

$$M = \frac{VP}{\frac{1}{r - \alpha} \left[1 - \left(\frac{1 + \alpha}{1 + r} \right)^{n} \right]}$$

Montos

Períodos [años]



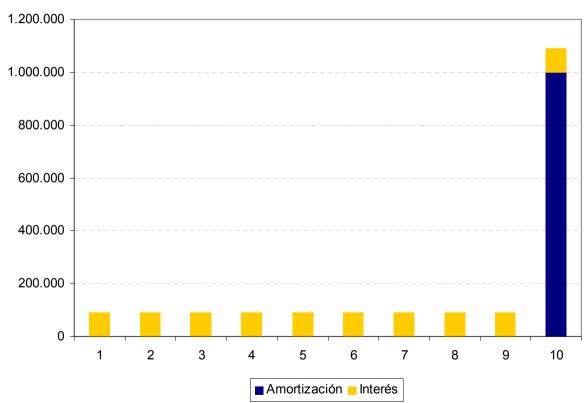
Cupones crecientes

Ejemplo: D=1.000.000, N=10, r=9%, α =5%

- Cupones constantes
- Amortizaciones constantes
- Cupones crecientes
- Bullet
- Cero cupón
- El mundo real

Bullet

- Corresponde a una deuda donde sólo se pagan intereses y en el último período se amortiza la totalidad del monto solicitado
- Por lo tanto:
 - El pago de intereses es igual a Deuda*r en todos los períodos.
 - Todas las amortizaciones son cero, excepto la última que es igual al monto de la deuda solicitada.



Bullet

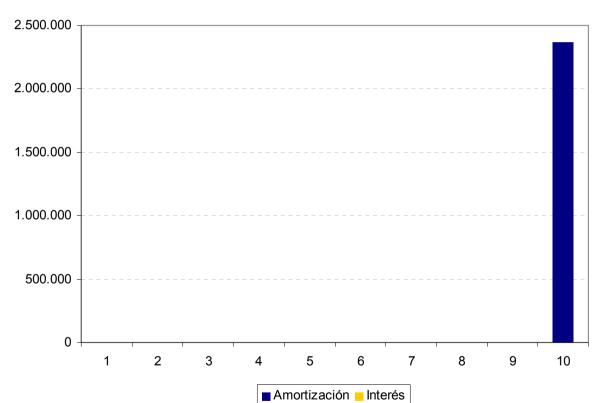
Ejemplo: D=1.000.000, N=10, r=9%

- Cupones constantes
- Amortizaciones constantes
- Cupones crecientes
- Bullet
- Cero cupón
- El mundo real

Cero Cupón

 Corresponde a una deuda donde sólo existe 1 cupón, que se paga al final de la deuda. Aquí se amortiza el total de la deuda más los intereses capitalizados.

$$Cup\acute{o}n_n = D \times (1+r)^n$$



Cero Cupón

Ejemplo: D=1.000.000, N=10, r=9%

- Cupones constantes
- Amortizaciones constantes
- Cupones crecientes
- Bullet
- Cero cupón
- El mundo real

El mundo real

- Períodos de gracia
- Períodos de distinta longitud
- Comisiones
- Cuentas de reserva
- Ratio de cobertura

Períodos de gracia

- Corresponden a períodos especiales, generalmente al inicio del crédito, donde el acreedor permite:
 - Que se paguen sólo intereses (que no se realicen amortizaciones)
 - Que no se paguen intereses ni amortizaciones

Períodos de distinta longitud

- Generalmente el crédito se repaga en forma semestral, donde el primer semestre tiene menos días que el segundo.
- Esto hace que las tasas aplicadas en cada período sean distintas.
- Las fórmulas tradicionales de Excel ya no son válidas

Comisiones

- El otorgamiento de un crédito lleva involucrado el pago de impuestos y comisiones que deben incluirse en la modelación; por ejemplo:
 - Estructuración
 - Compromiso
 - Stand by LOC
- Algunas de estas comisiones dependen del monto de la deuda, la que a su vez depende del costo total del proyecto, que incluye las comisiones del financiamiento → Recursividad

Cuentas de Reserva

- En algunas ocasiones el financista pone como condición para el otorgamiento del crédito, la generación de cuentas de reserva para garantizar el servicio de la deuda. Generalmente se solicita de 1 a 2 períodos.
- La evaluación estocástica es una herramienta muy útil para determinar la cantidad de períodos de reserva necesarios.
- Dependiendo de la estructura de costos que tenga el proyecto, se puede exigir también la constitución de cuentas de reserva para el mantenimiento.

Ratio de Cobertura (DSCR)

 Es el indicador por excelencia para determinar la robustez financiera de un proyecto y se define como la holgura de los ingresos netos para repagar el crédito:

$$DSCR_{t} = \frac{I_{t} - C_{t} - T_{t}}{Cup\acute{o}n_{t}}$$

 Generalmente se exige 1,1x ó 1,2x para un proyecto con garantías del Estado y de 1,4x hacia arriba para proyectos sin garantía.

PRIMER ENCUENTRO TÉCNICO SOBRE LA ESTRUCTURACIÓN DE PROYECTOS DE ASOCIACIÓN PÚBLICO-PRIVADA

Introducción a la modelación financiera en esquemas de APPs

Simulación de deuda de pagos diferidos

ENRIQUE MORAGA BERARDI

Consultor Privado

enrique.moraga.b@gmail.com